lederr

more awesomeness in neuroscience…

In Education, Neurogenesis, Neuropsychology, Neuroscience, School Psychology on Saturday, 13 October 2012 at 09:30

Brain Scans Can Detect Children’s Reading Ability

BY AMBER MOORE

Stanford researchers say that brain scans can help detect whether or not a child will develop reading-related problems in the future, a discovery that opens up possibility of intervention programs for helping children improve their reading ability.  In a study, conducted over a period of three years, researchers at Stanford University assessed children’s reading skills with the help of standardized tests. They observed and analyzed the participants’ brain scans taken during the study.

Researchers found that in each of the 39 children, the rate of development in the white matter region accurately predicted the child’s score on a reading test. The white matter regions of the brain are associated with reading; the rate of development in the brain region is measured by fractional anisotropy, or FA.

Further, children who displayed above-average reading skills had FA in two regions, the left hemisphere arcuate fasciculus and the left hemisphere inferior longitudinal fasciculus. Interestingly, in children who develop good reading skills, the initial FA was lower but increased over time. In children that had lower reading abilities, the FA was higher initially but declined afterwards.

According to researchers, a child’s ability to read at seven years of age can predict hisor her reading ability at 17 years of age. But, detecting if the child has problems with reading can be a challenge. “By the time kids reach elementary school, we’re not great at finding ways of helping them catch up,” said Jason D. Yeatman, a doctoral candidate in psychology at Stanford and the lead author on the study.

The great news is the study could one day lead to an early warning system for struggling students and this could help children improve their reading ability as the brain is young and is still developing.

“Once we have an accurate model relating the maturation of the brain’s reading circuitry to children’s acquisition of reading skills, and once we understand which factors are beneficial, I really think it will be possible to develop early intervention protocols for children who are poor readers, and tailor individualized lesson plans to emphasize good development. Over the next five to 10 years, that’s what we’re really hoping to do,” Yeatman said.

The study was published in the Proceedings of the National Academy of Sciences.

Retrieved from: http://www.medicaldaily.com/articles/12666/20121012/brain-scans-detect-childrens-reading-ability.htm#go5H3ZzSAe1jtK0g.99

Development of white matter and reading skills

PNAS Plus – Biological Sciences – Psychological and Cognitive Sciences

Jason D. Yeatman, Robert F. Dougherty, Michal Ben-Shachar, and Brian A. Wandell

White matter tissue properties are highly correlated with reading proficiency; we would like to have a model that relates the dynamics of an individual’s white matter development to their acquisition of skilled reading. The development of cerebral white matter involves multiple biological processes, and the balance between these processes differs between individuals. Cross-sectional measures of white matter mask the interplay between these processes and their connection to an individual’s cognitive development. Hence, we performed a longitudinal study to measure white-matter development (diffusion-weighted imaging) and reading development (behavioral testing) in individual children (age 7–15 y). The pattern of white-matter development differed significantly among children. In the left arcuate and left inferior longitudinal fasciculus, children with above-average reading skills initially had low fractional anisotropy (FA) that increased over the 3-y period, whereas children with below-average reading skills had higher initial FA that declined over time. We describe a dual-process model of white matter development comprising biological processes with opposing effects on FA, such as axonal myelination and pruning, to explain the pattern of results.

PNAS Plus: Development of white matter and reading skillsPNAS 2012 ; published ahead of print October 8, 2012,doi:10.1073/pnas.1206792109

Retrieved from: http://www.pnas.org/search?fulltext=reading&go.x=0&go.y=0&go=GO&submit=yes

 

 

Advertisements
  1. This is amazing

    Phil C. Solomon 404-849-8065

    This message was sent from my Android phone. Please excuse any typos or message brevity.

Thanks for your comments!

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: